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In this article, we propose an approach to calculate the effective electron concentration and electron energy density in 
multilayer high electron mobility transistors (HEMT). After utilizing an interesting mathematical change to achieve realistic 
results, numerical modeling was applied to model devices with algebraic computer language. The simulation results for 
band structure and electron density profile are comparable with those of other numerical calculations.  
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1. Introduction 
 

Quantum well devices have been used as microwave 

oscillators, switches, attenuators, and amplifiers for 

discrete ultra-high-speed circuit elements. The devices can 

also be incorporated into a monolithic integrated circuit in 

modern technology [1]. The high power and high 

frequency requirements are due to transistor devices based 

on semiconductor materials with both high breakdown 

voltage and high electron velocity. Two advantages of 

these devices can be counted. The first is the presence of a 

wide bandgap, which leads to high breakdown voltage and 

high saturation velocity. The second is the existence of 

heterostructures with high conduction band offset and high 

piezoelectricity, which results in high sheet carrier 

densities [2]. The ability of nitrate-based alloy 

semiconductor materials to form a heterojunction is 

unlimited compared to other semiconductor materials 

made from alloys. 

The physical phenomena that occur in such a micro-

device require precise physical models to characterize the 

functioning of the device and crucially optimize the 

structure. Modeling the progression requires many steps 

that correspond to the functionality of the device. The 

equations for the physical modeling, essentially 

differential equations, are defined by related approaches. 

In [3], a detailed description and the modeling equations 

are provided. Cole [4] suggested acceptable physical 

equations based on aspects of quantum and statistical 

mechanics. Cole also showed additional complexity and 

how to solve the Schrödinger and Poisson equations. The 

solution to the equations is based on the calculation of the 

electron density and electron energy densities of the 

components using certain integrals with approximate 

realistic results for device modeling.  

Papers [5] and [6] proved a new analytic approach to 

formulas included in the analytical forms of Cole’s device 

modeling, using incomplete gamma functions. In 

Mamedov’s article, the solutions did not apply to the 

devices; it showed how the results could be converged 

towards the model. For the purpose of the present paper, a 

highly precise analytic method will be applied to a 

multilayer device to optimize the design. The device’s 

band structure and electron density will be depicted. 

 

 
2. Definitions and formulations 

 
As a new aspect of our work, an algebraic computer 

language is implemented for the electron densities and the 

electron energy density. Later, they are reduced to 

incomplete gamma functions,  ,rI a b , and then 

converted into the Fermi integrals. Multilayered High 

Electron Mobility Transistors, HEMT, are appropriate for 

the application of the formulated criterion. 

For the structure, the electrons confined in a channel 

are calculated by solving the Poisson equation as follows. 
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The right side of the equation needs the electron 

density n . The total electron density for a layer structure 

results from the contribution of the subbands and from the 

bulk electron density [4]. 
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and from inside the potential well as 
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For the non-degenerated case, the expressions 

corresponding to energy density are given as 
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outside the quantum well, while in the quantum well, they 

are given as  
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where the electron concentration for related material is   
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In equations (5) through (7), s bw w  is the total 

energy and is a constant number in the case of electrons. 

The potential well is formed near the interface. Therefore, 

the Schrödinger equation needs the solution of the Poisson 

equation solution.  
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xcV  is exchange correlation energy, 

 0.067 0.083 em x m    is the effective electron mass, 

and x  is the material concentration. The band offset of 

the different layers is  20.65 1.155 0.37hE x x   and 

the permittivity of the material is  13.18 3.12r x   . 

From now on, the task consists of obtaining the 

formulas’ incomplete gamma functions,  ,rJ a b  and 

 rF a , which appear in equations (2) to (7), using the 

binomial expansion theorem.  
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In the extraction of the formulas, the recurrence 

relations for gamma functions were used. By writing a 

Mathematica code to demonstrate the numerical results 

[7], we have  ,rJ a b  and  rF a  as follows: 
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The expression  ,iK r a  in equations (11) and (12) is 

determined by the relation  

 

 
 

1

1

,
1 !

r jL
ai j

i

j

a
K r a e i

r j j

 





 

               (13) 

 

 , x  are incomplete gamma functions.  

 

 
3. Calculations and discussion 

 
Fig. 1 schematically shows a typical conduction band 

profile for an HEMT device for comparison with the 

predicting model. The device was formed with a doped 

ternary compound AlGaAs layer, 20 nm thin, and then an 

undoped ternary AlGaAs spacer layer, a few nm  deep, 

was placed over it. Finally, a binary buffer GaAs layer, 

200 nm deep, was positioned further down. The 

composition of Alin doped layer was 0.3. The other 

physical parameters related to the device can be found in 

other texts.  
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Fig. 1. Schematic Diagram of the Conduction  

Band of a HEMT 

 

 

The profile of the conduction band of such a quantum 

well device modified by the incomplete gamma functions 

 ,rI a b  and then converted into the Fermi integrals 

method is presented graphically in Fig. 2. The modified 

model result indicates a quantum well at the 

heterostructure. Electrons in the buffer layer showed 

triangular type confinement as expected. As indicated by 

the conduction band profile, a spacer layer was necessary 

to prevent Coulombic interactions between electrons and 

ionize dopant atoms. In the absence of this layer, the 

electron distribution might possibly spill out into the 

metal. The electron density as a key characteristic of 

quantum well devices was at the maximum value in the 

region near the metal semiconductor interface. We note 

that the conduction band disruption occurred where the 

range of maximum electron density was 23 nm. 
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Fig. 2. Conduction Band Profile of the modified model 

 

 

In Fig. 3, the constructed model graphically shows the 

expected electron density. We assumed that the 

contributions to the electron density originated from the 

subbands caused by the AlGaAs layer and the bulk 

electron density caused by the GaAs layer. The current 

voltage characteristics, which were not dealt with in this 

work, could also be verified precisely on the basis of our 

mathematical substitutions of the proposed formulas and 

the knowledge of the electron distribution. When we 

compared our results with other calculations as shown in 

[3], the consistency of the method was confirmed. The 

results have been adapted properly to experimental data as 

shown in [8]. 
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Fig. 3. Electron Density of the modified model 

 

 

The numerical results of our modified model provided 

an advantage in two-dimensional device simulation in 

which the number of equations and unknowns are 

considerable to be solved. The modified formulas have 

been written in algebraic computer language, and 

Mathematica codes of the formulas  ,rJ a b  and  rF a  

are provided in the appendix. 

 

 
3. Conclusions 
 

We introduced a new analytic approach to the work of 

[4] that gives realistic results for modeling the devices. 

The execution of the formulas after reduction to 

incomplete gamma functions and then conversion to the 

Fermi integrals method provided significant advantages in 

terms of numerical efficiency and reasonable accuracy 

compared with complex methods. The simple exact 

expressions obtained for the model reduce the 

computational burden. The results can also help to 

determine device current-voltage characteristics. In 

addition, one can numerically estimate AC small-signal 

parameters from large signal data at great computational 

speed. The expressions obtained for the simulation of 

semiconductor device are exact and quickly predictable. 

 

 
Appendix 

 

Incomplete gamma functions,  ,rJ a b  and  rF a , 

may be written in Mathematica code as follows. 
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